Presburger Arithmetic and Pseudo-Recursive Saturation

David Llewellyn-Jones

School of Mathematics and Statistic The University of Birmingham Edgbaston, Birmingham, B15 2TT, U

Ilewelld@for.mat.bham.ac.uk
www.mat.bham.ac.uk/llewelld/

August 5th, 2001

Definition 1. A model of **Presburger arithmeti** an ordered abelian group with least positive elemethe axiom schema

$$\forall x \in \Gamma \ \exists y \in \Gamma \ \exists i \in \{0, 1, \dots, n-1\} \ (x = ny + i)$$

Definition 2. For Γ a model of Presburger arithm **ural residue map** $\varrho \colon \Gamma \to \widehat{\mathbb{Z}}$ is the homomorphism

$$\varrho(\gamma) = (\gamma \ (\text{mod 1}), \gamma \ (\text{mod 2}), \gamma \ (\text{mod 3}), \gamma \$$

Definition 3. For $a,b \in \Gamma$ with $a,b > \mathbb{Z}$, we define

$$\operatorname{st}\left(\frac{a}{b}\right) = \left\{\frac{n}{m} \in \mathbb{Q} : nb < ma\right\}.$$

This is an extended cut, identified with an extended $[0,\infty]\subseteq\mathbb{R}\cup\{\infty\}$, where $r=\operatorname{supst}\left(\frac{a}{b}\right)$.

Definition 4. For a model Γ the **set of standard** is defined to be

$$\operatorname{stQ}(\Gamma) = \left\{ \operatorname{st}\left(\frac{a}{b}\right) : a, b \in \Gamma \right\}.$$

Lemma 5. For $a,b,c\in\Gamma,q\in\mathbb{Q}$ the following hold

- 1. $\operatorname{st}\left(\frac{a}{b}\right)\cdot\operatorname{st}\left(\frac{b}{c}\right)=\operatorname{st}\left(\frac{a}{c}\right)$ provided the LHS is define
- 2. st $\left(\frac{qa}{b}\right) = q \cdot \text{st}\left(\frac{a}{b}\right)$;
- 3. $\operatorname{st}\left(\frac{a}{qb}\right) = \frac{1}{q} \cdot \operatorname{st}\left(\frac{a}{b}\right)$ for $q \neq 0$;
- 4. $\operatorname{st}\left(\frac{a+b}{c}\right) = \operatorname{st}\left(\frac{a}{c}\right) + \operatorname{st}\left(\frac{b}{c}\right)$ provided the RHS is
- 5. if $a \leq b$ then $\operatorname{st}\left(\frac{a}{c}\right) \leq \operatorname{st}\left(\frac{b}{c}\right)$;
- 6. if $\operatorname{st}\left(\frac{a}{b}\right) \not\in \{0, \pm \infty\}$ then $\operatorname{st}\left(\frac{a}{b}\right) = \operatorname{st}\left(\frac{b}{a}\right)^{-1}$.

Definition 6. If $a, b \in \Gamma$ then $a \equiv b$ if either a = b and

$$\operatorname{st}\left(\frac{a}{b}\right) \not\in \{0,\pm\infty\}.$$

Definition 7. we call $V = \Gamma/\equiv$ the set of **values** of a valuation map $v: \Gamma \to V$ by

$$v: a \mapsto a/\equiv$$
.

This valuation map is a reversal of the usual terminv $(\gamma_1 + \gamma_2) \le \max\{v(\gamma_1), v(\gamma_2)\}$.

Definition 8. A model of Presburger arithmetic recursively saturated if $\Gamma \not\cong \mathbb{Z}$ and

- 1. for $\varrho \colon \Gamma \to \widehat{\mathbb{Z}}$ and each $r \in \operatorname{Im}(\varrho)$, the inverse in dense in Γ ;
- 2. for $x, y, z \in \Gamma$ with $z \notin \mathbb{Z}$, there is some $w \notin \mathbb{Z}$ f

$$\operatorname{st}\left(\frac{w}{z}\right) = \operatorname{st}\left(\frac{x}{y}\right);$$

3. the set of values V is a dense linear order hav0 and no greatest point.

Theorem 9. Suppose Γ is 2-homogeneous, then are equivalent:

- 1. Γ has no smallest non-standard value, and ther trivial $g \in G$;
- 2. there is some $x \in \Gamma$ with $\varrho(x) = 0$ and there are elements with value less than v(x);
- 3. there is a value-defying automorphism $h \in G$;
- 4. there exists a unique maximal convex submodistic pseudo-recursively saturated.

Theorem 10. If Γ is a countable pseudo-recursi model then Γ is homogeneous.

Example 11.

$$G_{\mathsf{V}} = \{g \in G : \mathsf{v}(\gamma g) = \mathsf{v}(\gamma) \text{ for all } \gamma \in \mathsf{V}\}$$

is a non-trivial, proper, closed normal subgroup of

Definition 12. If $S_n \subseteq (\operatorname{stQ}(\Gamma)_{>0})^n \subseteq (\mathbb{R}_{>0}^*)^n$ the is stQ-closed if

- 1. each S_n is nonempty and closed under pointw tion;
- 2. each S_n is closed under pointwise inversion;
- 3. when $(r_1, \ldots, r_n) \in S$ and $m \leq n$ then

$$(r_1,\ldots,r_{m-1},r_{m+1})$$

4. when $(r_1, \ldots, r_n) \in S$ and $m \le n+1$ then there one r'_m so that $(r_1, \ldots, r_{m-1}, r'_m, r_m, \ldots, r_n) \in$

Definition 13. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\Gamma)_{>0})^n$ is stQ-cl is the set of automorphisms

$$G_S = \left\{ g \in G_{\mathsf{V}} : \forall n \in \omega \, \forall x_1, \, \dots, x_n \in \Gamma \right.$$

$$\left(\mathsf{st} \left(\frac{x_1 g}{x_1} \right), \dots, \mathsf{st} \left(\frac{x_n g}{x_n} \right) \right) \right\}$$

Theorem 14. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\Gamma)_{>0})^n$ is stQ-clo a closed normal subgroup of G.

Theorem 15. Suppose that G has trivial centre a closed normal subgroup of G. If

$$S=\left\{\left(\operatorname{st}\left(\frac{x_1g}{x_1}\right),\ldots,\operatorname{st}\left(\frac{x_ng}{x_n}\right)\right):n\in\omega,g\in N,x_1,$$
 then $N=G_S$.

Proposition 16. Suppose $T_1, T_2 \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\Gamma))$ closed with $T_1 \subset T_2$. Then $G_{T_1} \subset G_{T_2}$.

Definition 17. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\Gamma)_{>0})^n$ then we creduction of S to be:

$$\overline{S}^{\mathrm{stQ}} = \bigcup_{\substack{T \subseteq \langle S \rangle \\ T \text{ stQ-closed}}} T.$$

Proposition 18. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\Gamma))^n$ then the sociosed.

Proposition 19. Let T_1 and T_2 be stQ-closed. T

$$G_{\langle T_1 \cup T_2 \rangle} = \overline{\langle G_{T_1} \cup G_{T_2} \rangle}.$$

Proposition 20. Let T_1 and T_2 be stQ-closed. T

$$G_{\overline{T_1 \cap T_2}}$$
stQ = $G_{T_1} \cap G_{T_2}$.

Lemma 21. Suppose $P = \{p_1, \dots, p_n\}$ is a set that $p \notin P$. Then $\langle P \rangle \neq \langle P \cup \{p\} \rangle$ where

$$\langle P \rangle = \{ s \in \mathbb{Q} : n \in \omega, x_1, \dots, x_n \in P, l_1, \dots, l_n \in \mathbb{Z}, s \in \mathbb{Z} \}$$

Corollary 22. Let Γ be a countable pseudo-recurs model of Presburger arithmetic with trivial centre 2^{\aleph_0} closed normal subgroups.

Definition 23. The set $B \subseteq \Gamma$ is **strongly indepe** and every non-trivial \mathbb{Q} -linear combination

$$a = q_1b_1 + \dots + q_nb_n$$

has value

$$v(a) = \max\{v(b_j) : 1 \le j \le n, q_j \ne 0\}$$

where $q_1, \ldots, q_n \in \mathbb{Q}$ and $b_1, \ldots, b_n \in B$.

Lemma 24 (Exchange Lemma). If a_1, \ldots, a_n adependent in Γ , and $a \in \Gamma$ then

either $a \in \langle a_1, \ldots, a_n \rangle$

or $\exists a_{n+1} \in \langle a_1, \ldots, a_n, a \rangle$ such that a_1, \ldots, a are strongly independent and $a \in \langle a_1, \ldots, a_n, a \rangle$

Lemma 25. If $\{x_1, \ldots, x_n\} \subseteq \Gamma$ and $\{y_1, \ldots, y_n\}$ strongly independent sets, then the following are

1.
$$tp(\bar{x}) = tp(\bar{y});$$

2.
$$\varrho(x_i) = \varrho(y_i)$$
 and $\operatorname{st}\left(\frac{x_i}{x_j}\right) = \operatorname{st}\left(\frac{y_i}{y_j}\right)$ for all $1 \leq i$

Proof. Follows from quantifier elimination.

Victor Harnik. ω_1 -like recursively saturated moburger's arithmetic. *J. Symbolic Logic*, 51(2):421

Richard Kaye and Dugald Macpherson, editor phisms of first-order structures. The Clarendon University Press, New York, 1994.

Richard Kaye. *Models of Peano Arithmetic.* Ox Press, Oxford, 1991.

Richard Kaye. Presburger arithmetic. Notes from University study group, 1997.

Mojžesz Presburger. On the completeness of tem of arithmetic of whole numbers in which addithe only operation. *Hist. Philos. Logic*, 12(2):22 Translated from the German and with commentations. Jacquette.