A model of **Presburger Arithmetic**, $(\Gamma, +, <, 0, 1)$ abelian group with least positive element 1 satisfy schema

$$\forall x \in \Gamma \exists y \in \Gamma \exists i \in \{0, 1, \dots, n-1\} (x = n)$$

Definition 1. $\widehat{\mathbb{Z}}$ is the group of sequences $(r_n)_{n\in\mathbb{N}}$

$$0 \le r_n < n$$
 for all $n \ge 1$, $r_{nm} \equiv r_n \pmod{n}$ for all $n, m \ge 1$.

where

$$(r_n)_{n\in\mathbb{N}}+(s_n)_{n\in\mathbb{N}}=(r_n+s_n\pmod n)_n$$

Definition 2. For Γ a Presburger group, the **na map**

$$\rho \colon \Gamma \to \widehat{\mathbb{Z}}$$

is the homomorphism

$$\varrho(\gamma) = (\gamma \ (\text{mod } 1), \gamma \ (\text{mod } 2), \gamma \ (\text{mod } 3))$$
 for all $\gamma \in \Gamma$.

Definition 3. Γ is divisible if for all $x \in \Gamma$ and all there is $y \in \Gamma$ with ny = x.

Proposition 4. If Γ is a Presburger group then convex subgroup, so Γ/\mathbb{Z} is divisible.

Theorem 5. Suppose $\overline{\Gamma}$ is a divisible ordered abe $\overline{\varrho} \colon \overline{\Gamma} \to \widehat{\mathbb{Z}}/\mathbb{Z}$ a homomorphism. Then for some Proof we have

where $\theta \colon \Gamma/\mathbb{Z} \to \overline{\Gamma}$ is an isomorphism and the uniform represent natural quotient maps.

Notation 6. We write $\overline{\varrho}$: $\overline{\Gamma} \to \widehat{\mathbb{Z}}/\mathbb{Z}$ to mean the in ϱ/\mathbb{Z} : $\Gamma/\mathbb{Z} \to \widehat{\mathbb{Z}}/\mathbb{Z}$.

Definition 7. Let $\alpha \colon \overline{\Gamma} \to \overline{\Gamma}$ be an automorphis ordered divisible abelian group so that

$$\overline{\varrho}(\alpha(a)) = \overline{\varrho}(a)$$
 for all $a \in \overline{\Gamma}$.

Then we say the map $\alpha \colon \overline{\Gamma} \to \overline{\Gamma}$ preserves residue-residue-automorphism.

Proposition 8. If $\alpha \colon \overline{\Gamma} \to \overline{\Gamma}$ is a residue-automorphism:

$$\widehat{\alpha} \colon \Gamma \to \Gamma$$
.

Definition 9. Γ is homogeneous if for $\bar{a}, \bar{b} \in \Gamma^n$ $\operatorname{tp}(\bar{b})$ there is some $\alpha \in \operatorname{Aut}(\Gamma)$ with $\bar{a}\alpha = \bar{b}$.

Definition 10. For $a, b \in \overline{\Gamma}$ with $a, b > \mathbb{Z}$, we define

$$\operatorname{st}\left(\frac{a}{b}\right) = \left\{ q \in \mathbb{Q} : qb < a \right\}.$$

This is an extended cut, identified with an extension $[0,\infty]\subseteq\mathbb{R}\cup\{\infty\}$, where $r=\operatorname{supst}\left(\frac{a}{b}\right)$.

Lemma 11. For $a,b,c\in\overline{\Gamma},q\in\mathbb{Q}$ the following ho

1. $\operatorname{st}\left(\frac{a}{b}\right)\cdot\operatorname{st}\left(\frac{b}{c}\right)=\operatorname{st}\left(\frac{a}{c}\right)$ provided the LHS is defined;

2.
$$\operatorname{st}\left(\frac{qa}{b}\right) = q \cdot \operatorname{st}\left(\frac{a}{b}\right);$$

3.
$$\operatorname{st}\left(\frac{a}{qb}\right) = \frac{1}{q} \cdot \operatorname{st}\left(\frac{a}{b}\right)$$
 for $q \neq 0$;

4. $\operatorname{st}\left(\frac{a+b}{c}\right) = \operatorname{st}\left(\frac{a}{c}\right) + \operatorname{st}\left(\frac{b}{c}\right)$ provided the RHS is define

5. if
$$a \leq b$$
 then $\operatorname{st}\left(\frac{a}{c}\right) \leq \operatorname{st}\left(\frac{b}{c}\right)$;

6. if $\operatorname{st}\left(\frac{a}{b}\right) \not\in \{0, \pm \infty\}$ then $\operatorname{st}\left(\frac{a}{b}\right) = \operatorname{st}\left(\frac{b}{a}\right)^{-1}$.

Definition 12. If $a,b \in \overline{\Gamma}$ then $a \equiv b$ if either a = b and

$$\operatorname{st}\left(\frac{a}{b}\right) \not \in \{0, \pm \infty\}.$$

This is an equivalence relation so we may define:

Definition 13. $V = \overline{\Gamma}/\equiv$ is the set of values of $\overline{\Gamma}$ ordered by

$$a/\equiv < b/\equiv \iff a/\equiv \neq b/\equiv \text{ and } |a| < 0$$

The valuation map $v \colon \overline{\Gamma} \to V$ is defined by

$$a \mapsto a/\equiv$$
.

v: $\overline{\Gamma} \rightarrow V$ has the following properties:

1.
$$v(qa) = v(a)$$
 for all $q \in \mathbb{Q} \setminus \{0\}$;

2. if
$$|a| \leq |b|$$
 then $v(a) \leq v(b)$;

3. if
$$n|a| < |b|$$
 for all $n \in \mathbb{N}$ then $v(a) < v(b)$;

4. st
$$\left(\frac{a}{b}\right) = 1 \implies \forall (a-b) < \forall (a), \forall (b);$$

5. st
$$\left(\frac{a}{b}\right) \neq 1 \quad \Rightarrow \quad \mathsf{v}(a-b) = \mathsf{max}(\mathsf{v}(a),\mathsf{v}(b)).$$

Definition 14. The set $B \subseteq \overline{\Gamma}$ is strongly indepearned every nontrivial \mathbb{Q} -linear combination

$$a = q_1b_1 + \dots + q_nb_n$$

has value

$$v(a) = \max\{v(b_j) : 1 \le j \le n, q_j \ne 0\}$$

where $\bar{q} \in \mathbb{Q}$ and $\bar{b} \in B$.

Lemma 15 (Exchange Lemma). If a_1, \ldots, a_n and $a \in \overline{\Gamma}$ then

either $a \in \langle a_1, \ldots, a_n \rangle$

or $\exists a_{n+1} \in \langle a_1, \ldots, a_n, a \rangle$ such that a_1, \ldots, a are strongly independent and $a \in \langle a_1, \ldots, a_n, a \rangle$

Lemma 16. If $\{x_1, \ldots, x_n\} \subseteq \overline{\Gamma}$ and $\{y_1, \ldots, y_n\}$ strongly independent sets, then the following are

1.
$$tp(\bar{x}) = tp(\bar{y})$$
;

2.
$$\varrho(x_i) = \varrho(y_i)$$
 and $\operatorname{st}\left(\frac{x_i}{x_j}\right) = \operatorname{st}\left(\frac{y_i}{y_j}\right)$ for all $1 \leq i \leq j$

Proof. Follows from quantifier elimination.

Theorem 17. Suppose Γ is 2-homogeneous, then are equivalent:

- 1. Γ has no smallest non-standard value, and there trivial $g \in G$;
- 2. there is some $x \in \Gamma$ with $\varrho(x) = 0$ and there are elements with value less than v(x);
- 3. there is a value-defying automorphism $h \in G$;
- 4. Γ contains a unique maximal convex submodel with ing a dense linear order, with $\varrho^{-1}(r)$ dense in Γ so that for all non-standard $x,y,z\in\Gamma$ there is w st $\left(\frac{w}{z}\right)=\operatorname{st}\left(\frac{x}{y}\right)$.

Definition 18. A Presburger group Γ is **pseud** saturated if $\Gamma \not\cong \mathbb{Z}$ and

- 1. for $\overline{\varrho}$: $\overline{\Gamma} \to \widehat{\mathbb{Z}}/\mathbb{Z}$ and each $\mathbb{Z}+r \in \operatorname{Im}(\overline{\varrho})$, the inverse r) is dense in $\overline{\Gamma}$;
- 2. for $x, y, z \in \Gamma$ with $z \notin \mathbb{Z}$, there is some $w \notin \mathbb{Z}$ for $w \in \mathbb{Z}$

$$\operatorname{st}\left(\frac{w}{z}\right) = \operatorname{st}\left(\frac{x}{y}\right)$$
 ;

3. the set of values V is a dense linear order with having least point 0 and no greatest point.

Theorem 19. Let $\overline{\Gamma}$ be prs and suppose that $(a_1 \overline{\Gamma} \text{ and } (b_1, \ldots, b_n) = \overline{b} \in \overline{\Gamma}$ are such that $\operatorname{tp}(\overline{a}) = \overline{b}$ there are strongly independent sets $\{a'_1, \ldots, a'_n\}$ a for which:

1.
$$\langle a_1, \ldots, a_n \rangle = \langle a'_1, \ldots, a'_n \rangle$$
 and $\langle b_1, \ldots, b_n \rangle = \langle b'_1, \ldots, b'_n \rangle$

2.
$$a_i = q_1 a_1' + \dots + q_n a_n'$$
 if and only if $b_i = q_1 b_1' + \dots + q_1, \dots, q_n \in \mathbb{Q}$;

3.
$$\overline{\varrho}(a_i') = \overline{\varrho}(b_i')$$
 for $1 \le i \le n$;

4.
$$\operatorname{st}\left(\frac{a_{i}'}{a_{j}'}\right) = \operatorname{st}\left(\frac{b_{i}'}{b_{j}'}\right)$$
 for $1 \leq i \leq j \leq n$.

Theorem 20. Suppose Γ is countable prs, and the

$$A = \{a_1, a_2, \dots, a_n\}, \qquad B = \{b_1, b_2, \dots$$

are strongly independent subsets of Γ with:

1.
$$\varrho(a_i) = \varrho(b_i)$$
 for all $1 \le i \le n$;

2.
$$\operatorname{st}\left(\frac{a_i}{a_j}\right) = \operatorname{st}\left(\frac{b_i}{b_j}\right)$$
 for all $1 \leq i, j \leq n$.

Then there exists an automorphism $\theta: \Gamma \to \Gamma$ material i.

Corollary 21. If Γ is countable prs then Γ is hom

Example 22.

 $G_{\mathsf{V}} = \{g \in G : \mathsf{v}(\gamma g) = \mathsf{v}(\gamma) \text{ for all } \gamma \in \mathsf{V}\}$

is a non-trivial, proper, closed normal subgroup o

Theorem 23. Let Γ be countable prs with $h \in C$ $a_1, \ldots, a_n \in \Gamma \setminus \mathbb{Z}$ and $b_1, \ldots, b_n \in \Gamma \setminus \mathbb{Z}$ are such that Suppose further that $\infty \in \operatorname{stQ}(\langle h \rangle)$. Then there such that

$$\bar{a}h^{g_1}h^{-g_2} = \bar{b}.$$

Lemma 24. Suppose $h \in G$ preserves values, an arbitrary. Then $v(\gamma g^{-1}hg) = v(\gamma)$ for all $\gamma \in \Gamma$.

Definition 25. If $S_n \subseteq (\operatorname{stQ}(\overline{\Gamma}))^n \subseteq (\mathbb{R}^*_{>0})^n$ and then the stQ-closure properties are as follows:

- 1. Each S_n is nonempty and closed under pointwise
- 2. each S_n is closed under pointwise inversion;
- 3. if $(r_1, \ldots, r_n) \in S$ and $m \leq n$ then

$$(r_1,\ldots,r_{m-1},r_{m+1})$$

4. if $(r_1, \ldots, r_n) \in S$ and $m \leq n+1$ then there exist r'_m so that $(r_1, \ldots, r_{m-1}, r'_m, r_m, \ldots, r_n) \in S$.

Definition 26. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\overline{\Gamma}))^n$ is stQ -close the set of residue automorphisms

$$G_S^{<\omega} = \left\{ g \in G_V : \forall n \in \omega \, \forall \, \mathsf{v}(x_1) < \dots < \mathsf{v}(x_n) \right.$$

$$\left(\mathsf{st} \left(\frac{x_1 g}{x_1} \right), \dots, \mathsf{st} \right.$$

Theorem 27. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\overline{\Gamma}))^n$ is $\operatorname{stQ-close}$ a closed normal subgroup of G.

Theorem 28. Suppose $N \subseteq G$ is a normal subgrautomorphisms. If

$$S = \left\{ \left(\operatorname{st}\left(\frac{x_1 g}{x_1}\right), \dots, \operatorname{st}\left(\frac{x_n g}{x_n}\right) \right) : n \in \omega, g \in N, \mathsf{v}(x_1) \right\}$$

then S satisfies the $\operatorname{stQ-closure}$ properties and N

Theorem 29. Suppose that G has trivial centre a closed normal subgroup of G. If

$$S = \left\{ \left(\operatorname{st}\left(\frac{x_1 g}{x_1}\right), \dots, \operatorname{st}\left(\frac{x_n g}{x_n}\right) \right) : n \in \omega, g \in N, \mathsf{v}(x_1) \right\}$$

then $N = G_S^{<\omega}$.

Definition 30. Let $\gamma_1, \gamma_2 \in \Gamma$. We say γ_1 is close

$$\operatorname{st}\left(\frac{\gamma_1}{\gamma_2}\right) = 1$$
 or $\gamma_1 = \gamma_2 = 0$.

We denote this property by writing $\gamma_1 \sim \gamma_2$.

Proposition 31. Suppose $h \in G$ preserves values ther that $a_1, \ldots, a_n \in \overline{\Gamma}$ are such that $0 < v(a_n) <$

Proposition 32. Suppose $h \in G$ is non-trivial, fix segment and that $\gamma h \frown \gamma$ for all $\gamma \in \overline{\Gamma}$. Suppose $a_1 < \cdots < a_n \in \overline{\Gamma}$ are strongly independent, that that $b_k \frown a_k$ so that $\overline{\varrho}(b_k) = \overline{\varrho}(a_k)$. Then then $g_k \in \langle h^G \rangle$ which fixes each a_i with $v(a_i) \geq v(a_k)$ expanses a_k to b_k and so that $\gamma g_k \frown \gamma$ for all $\gamma \in \overline{\Gamma}$.

Corollary 33. Suppose $h \in G$ is non-trivial, fixe segment and that $\gamma h \frown \gamma$ for all $\gamma \in \overline{\Gamma}$. Suppose a

$$\{a_1,\ldots,a_n\}$$
 and $\{b_1,\ldots,b_n\}$

are both strongly independent, that $a_i \frown b_i$ with and $\operatorname{st}\left(\frac{a_i}{a_j}\right) = \operatorname{st}\left(\frac{b_i}{b_j}\right)$ for all $1 \leq i, j \leq n$. Then the $w \in \left\langle h^G \right\rangle$ which maps $w \colon a_i \mapsto b_i$ for all $1 \leq i \leq n$.

Proposition 34. If $T_1, T_2 \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\overline{\Gamma}))^n$ are s there exists some (r_1, \ldots, r_n) with

$$(r_1,\ldots,r_n)\in T_1$$
 but $(r_1,\ldots,r_n)\not\in$

then there is a residue automorphism $g \in G$ with $g \notin G_{T_2}^{<\omega}$.

Proposition 35. Suppose $T_1 \subseteq T_2$. Then $G_{T_1}^{<\omega} \subseteq G_{T_1}^{<\omega}$

Proposition 36. Suppose T_1 and T_2 are both stQ $\langle T_1 \cup T_2 \rangle = \{ t_1.t_2 : t_1 \in T_1, t_2 \in T_2 \}$ is stQ-closed.

Definition 37. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\overline{\Gamma}))^n$ then the sof S is defined to be:

$$\overline{S}^{\text{stQ}} = \bigcup_{\substack{T \subseteq \langle S \rangle \\ T \text{ stQ-closed}}} T.$$

Proposition 38. If $S \subseteq \bigcup_{n \in \omega} (\operatorname{stQ}(\overline{\Gamma}))^n$ then $\overline{S}^{\operatorname{stQ}}$ and $\overline{S}^{\operatorname{stQ}} \subseteq \langle S \rangle$.

Proposition 39. Let T_1 and T_2 be stQ-closed. 7

$$G_{\langle T_1 \cup T_2 \rangle}^{<\omega} = \overline{\left\langle G_{T_1}^{<\omega} \cup G_{T_2}^{<\omega} \right\rangle}.$$

Proposition 40. Let T_1 and T_2 be stQ-closed. 7

$$G_{\overline{T_1 \cap T_2}}^{<\omega} = G_{T_1}^{<\omega} \cap G_{T_2}^{<\omega}.$$

Definition 41. Let $\Gamma_{\mathsf{V}} \subseteq \bigcup_{n \in \omega} \Gamma^n$ be the set of $\mathsf{V}(x_1) < \cdots < \mathsf{V}(x_n)$.

Definition 42. If T is stQ-closed and $\bar{x}, \bar{y} \in \overline{\Gamma_V}$ we \bar{y} if $tp(\bar{x}) = tp(\bar{y})$ and

$$\left(\operatorname{st}\left(\frac{x_1}{y_1}\right),\ldots,\operatorname{st}\left(\frac{x_n}{y_n}\right)\right)\in T.$$

Lemma 43. Suppose $\bar{x}, \bar{y} \in \Gamma_{V}$. Then $\bar{x} \sim_{T} \bar{y}$ $\bar{x}g = \bar{y}$ for some $g \in G_{T}^{<\omega}$.

Theorem 44. In the diagram:

- 1. $G_{T_1}^{<\omega}\subseteq G_{T_2}^{<\omega}$ if and only if for all $\bar x,\bar y\in \Gamma_{\rm V}$ we have $\bar x\sim_{T_2} \bar y$.
- 2. The arrows are bijections.

Proposition 45. Suppose \sim is a G-invariant equivon Γ_V and that

1. if $x_1, \ldots, x_n \sim y_1, \ldots, y_n$ and $m \leq n$ then

$$x_1, \ldots, x_{m-1}, x_{m+1}, \ldots, x_n \sim y_1, \ldots, y_{m-1}, y_{m-1}$$

2. if $x_1, \ldots, x_n \sim y_1, \ldots, y_n$ and $m \leq n+1$ then there pair x'_m, y'_m with

$$x_1, \ldots, x_{m-1}, x'_m, x_m, \ldots, x_n \sim y_1, \ldots, y_{m-1}, y'_m,$$

3. suppose \bar{x}, \bar{y} are such that $\bar{x} \frown \bar{y}$, then $\bar{x} \sim \bar{y}$.

Then there is an stQ-closed T with $\bar{x} \sim \bar{y}$ if and c